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Abstract. We consider a system of coagulating monomers together with an external source 
of monomer with arbitraryproduction ratep(t ) .  The momentsMk(t)  = 2 , , = , n k v , ( t ) ,  where 
u , ( t )  is the concentration of n-mer at time t (and therefore also the weight and z average of 
the system), are obtained exactly as a function of p(i) .  The special case where the external 
source is the conversion of a substrate molecule to a monomer is discussed in more detail. If 
p ( t )  is an exponential, the concentrations U,, ( t )  can actually be evaluated by a simple contour 
integral. 

Consider a system consisting only of molecules (monomers) capable of reacting 
irreversibly to form larger molecules (polymers). Suppose further that the polymers 
similarly react with each other and that the reaction constants between two polymers 
are independent of size. 

The kinetic behaviour of this system has been studied by Smoluchowski (1916) with 
regard to coagulation of colloidal suspensions. In connection with polymerisation 
processes such a model as well as more elaborate ones have been extensively investi- 
gated (see, for example, Tompa 1976, Peebles 1971). 

It is the object of this paper to study the case where monomers are produced 
according to some definite law by a given external source. An important case would be 
monomer production by catalytic conversion of another molecule otherwise not 
involved in the polymerisation process. We discuss this later in more detail. 

Let us denote the n -mer molecule by A,. The polymerisation process can then be 
described as follows: 

A, +Am ---+ An+, 
k ,  

where k ,  is the polymerisation rate constant and is assumed to be independent of either 
n or m. A few remarks about the assumptions involved are in order. 

(i) We assume the reaction to be irreversible, i.e. dissociation of a molecule into 
smaller components is disregarded. 

(ii) We assume no mechanisms terminating the polymerisation process. This means 
that molecules will keep growing without limit as time increases, which is clearly 
unrealistic for the late stages of such a reaction. 

(iii) The constancy of k ,  might be derived from the assumption that the molecules 
grow without branching, having only two reactive sites. This would involve the further 
assumption that cyclisation can be neglected. Since we are already restricted by (ii) to 
the early stages of the reaction, such a neglect may not be so serious. It must, however, 
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be emphasised that we only require k ,  to be constant. In the theory of colloidal 
suspensions this is usually justified by a compensation of two effects: the increase of the 
collision cross section for large aggregates and the decrease of their diffusion constants. 

Let us now introduce some notation: 
U,(?): concentration of n-mers at time t. 
p ( r ) :  rate of monomer production at time t. 
P ( t )  = 5; p ( u )  du:  total production of monomer by the external source since time 0. 
We rescale the time as follows: 

r = k,t 

to obtain the equations: 
m 

v i = P ' - u l  u k  
k = l  

n-I  U? .. - 
V k Y n - k - U n  2 u k  ( n  s 2) 

(n 3 1 )  

k = l  k = l  

U , ( O )  = 0 

where the prime denotes differentiation with respect to 7. We now define: 
m 

~ ( r )  = C V k ( 7 )  
k - 1  

m 

k = l  
c ( z ;  7) V k ( 7 ) Z k  

f$(Z ; 7 )  = a(2 ; 7 )  - s ( T )  

for which the following equations hold: 
s'.-p'-' 2s 2 S(0 )  = 0 

aa 
- - ( Z ;  7 ) " Z P ' + i g 2 ( Z ;  T ) - S ( T ) V ( Z ;  T )  
?IT 

cr(z ; 0) = 0. 

The first equation is obtained by summing all the equations for U,, and the second can be 
verified using the definition and comparing the coefficients of z n .  

It follows that 

q z ;  7) = ( 2  - 1)P'+&b2(z;  7 )  
87. 

& ( z ;  0) = 0. 

We wish to obtain quantities of the type: 
m 

k f k ( r ) '  f l k v n ( T ) .  
n = l  

It is clear that we can obtain them as linear combinations of 
d f $ / d z ( l ,  r ) ,  . . . akq5/dzk(l ,  r ) .  Therefore we make the ansatz: 
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since 4(l, 7) = 0. With (1) we get 

ml(.r) = P ( T )  

m2(7) = lo' P 2 ( u )  du 

m3(7)  = 3 loT du P ( u )  lou du'  P 2 ( u ' )  

and generally: 

It follows that 

P2(u)  + P ( u )  du'  P2(u ' ) ]  + P ( T )  
0 

which give the number, weight and t average of the system as a function of time. 

formulae for their evaluation. Clearly 
As to the concentrations ~ ~ ( 7 )  it does not appear possible to give such simple 

However, the evaluation of mk(T) for large k ,  whether numerical or analytical, is utterly 
impracticable. Equation (3) is therefore only useful for T such that mk(7) decreases very 
rapidly with k .  A more practicable way would be to solve (1) exactly for the given 
function P(7)  and then to use the formula 

where C is any contour enclosing the origin; the problem of solving (1) exactly, 
however, cannot be solved for a general function P ( r )  but must be considered for each 
particular case separately. 

This research was motivated by static light scattering experiments (done by the 
group of Professor W Kanzig at the ETH-Zurich) measuring the intensity of light 
Scattered by a solution of fibrinogen and thrombin. Fibrinogen is converted by 
thrombin into fibrin which in turn coagulates. In this case monomer is produced by 
conversion of an otherwise inert molecule S. We have: 

P(T)  = V s ( 0 )  - W(T)  

where v s ( T )  denotes the concentration of S at time 7. 
In the Born approximation the scattered light intensity measures the second 

moment of the concentrations of the scatterers (see, for example, Berne and Pecora 
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1976). Since the molecule S also contributes to the scattered light intensity we must add 
vS(7)  to the expression (2) for M2(7). This gives: 

&(7) = M2(7) + vs(7)  = vs(0) + jooTPZ(u) du.  

If for small times P(7)  = O(T>’) then clearly: 

A22(?-)-*2(0) = o(72v+1) .  

This agrees nicely with a ‘time lag’ observed in static light scattering experiments. For 
an illustration see, for example, figure 1. 

Figure 1. Plot of the function A?*(r) with P ( T )  = 1 -e-ai  for different values of U .  

If the conversion takes place through the following catalytic reaction: 

S+C ---+ A1 + C  
kc 

we have 

U ;  = - kcvcus/k,  

where the catalyser concentration vc is a constant. Therefore 

4 7 )  = v ~ ( 0 )  exd-7) ((U 5;- kcvclk,) .  

Equation (1) can then be solved by standard methods (see, for example, Kamke 1956) 
yielding: 

where A = (2vs(0)(1 - z)/a)’”. K and L are modified Bessel functions in the notation 
of Abramowitz and Stegun (1964). We have, however, not succeeded in evaluating (4) 
analytically, even in this simplest case. 

Summarising, it may be said that, if the rate of monomer production is known as a 
function of time, it is fairly straightforward to compute the lowest moments of the 
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concentration distribution. For higher moments integrations in higher and higher 
dimensions become necessary, so that the evaluation becomes prohibitively difficult. 
The same applies to the functions ~ “ ( 7 )  unless P(7) be so simple that equation (1) can be 
solved analytically, as is the case for ~ ~ ( 7 )  = exp( -w). 

In the fibrinogen-thrombin system described above, however, the Born approxi- 
mation is not applicable except to the very smallest clusters. It is not complicated to 
account for the finite size of the scatterers but this would go beyond the scope of this 
paper. It is furthermore doubtful whether the initial assumptions of our model would 
hold in this case. We therefore do not attempt a comparison with experimental results. 
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